• Ace T'Ken@lemmy.ca
    link
    fedilink
    English
    arrow-up
    1
    ·
    6 hours ago

    I appreciate the reply!

    I made the attempt, but couldn’t parse that first link. I gathered that it was about error correction due to the absolutely massive number of them that crop up in QC, but I admit that I can’t get much further with it as the industry language is thick on that paper. Error reduction is good, but it still isn’t on any viable data, and it’s still a massive amount of errors even post-correction. It’s more of a small refinement to an existing questionable system, which is okay, but doesn’t really do much unless I’m misunderstanding.

    The Willow (and others) examples I’m skeptical on. We already have different types of chips for different kinds of operations, such as CPUs, GPUs, NPUs, etc. This is just one more kind of chip that will be found in computers of the future. Of course, these can sometimes be combined into a single chip too, but you get the idea.

    The factorization of integers is one operation that is simple on a quantum computer. Since that is an essential part of public / private key cryptography, those encryption schemes have been recently upgraded with algorithms that a quantum computer cannot so easily unravel.

    With quantum computing, a system of qubits can be set up in such a way that it’s like a machine that physically simulates the problem. It runs this experiment over and over again and measures the outcome, until one answer is the clear winner. For the right type of problem, and with enough qubits, this is unbelievably fast.

    Problem is, this only works for systems that have a known answer (like cryptography) with a verifiable result, otherwise the system never knows when the equation is “complete”. It’s also of note that none of these organizations are publishing their benchmarking algorithms so when they talk about speed, they aren’t exactly being forthright. I can write code that runs faster on an Apple 2e than a modern x64 processor, doesn’t mean the Apple 2e is faster. Then factor in how fast quantum systems degrade and it’s… not really useful in power expenditure or financially to do much beyond a large corporation or government breaking encryption.