Well, the definition of the mean and median of a sample doesn’t depend on the particular data set, and there’s plenty of non-age related causes of death in the world which would logically skew the distribution to the left! You can look at actuarial tables to see this in action:
Male life expectancy at birth in this table is 74.12, but you’ll notice that you don’t get to 50% of the population dying until somewhere between the ages of 78 and 79.
This website has a pretty good chart showing the skew for a 2019 dataset:
Well, both of us are making assumptions without doing the research.
So. I respect your opinion but neither of us knows that we are actually correct.
Well, the definition of the mean and median of a sample doesn’t depend on the particular data set, and there’s plenty of non-age related causes of death in the world which would logically skew the distribution to the left! You can look at actuarial tables to see this in action:
https://www.ssa.gov/oact/STATS/table4c6.html
Male life expectancy at birth in this table is 74.12, but you’ll notice that you don’t get to 50% of the population dying until somewhere between the ages of 78 and 79.
This website has a pretty good chart showing the skew for a 2019 dataset: