I’d imagine your farts would get compressed a bit increasing the air density. This would lead to expelling a larger volume of gas at whatever atmospheric pressure you’re at, than what was inside your body under pressure. Maybe this is negligible, by maybe not. Just food for thought.
Agreed, I was trying to work out if that matters and decided to assume that it is negligible. Partly this was because it would change as the fart moves around, and as part of the farting process the air must be compressed to some degree. All of the quantities in this problem are basically negligible though so maybe it is important.
Since we’ve all participated so far, what not ask the more important question of how much thrust could a standard fart be expected to generate and how best to optimize for thrust?
I’d imagine your farts would get compressed a bit increasing the air density. This would lead to expelling a larger volume of gas at whatever atmospheric pressure you’re at, than what was inside your body under pressure. Maybe this is negligible, by maybe not. Just food for thought.
Agreed, I was trying to work out if that matters and decided to assume that it is negligible. Partly this was because it would change as the fart moves around, and as part of the farting process the air must be compressed to some degree. All of the quantities in this problem are basically negligible though so maybe it is important.
Since we’ve all participated so far, what not ask the more important question of how much thrust could a standard fart be expected to generate and how best to optimize for thrust?